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ABSTRACT

Highly maneuverable ocean going vehicles require quick response, control, and

guidance to maintain accurate track keeping characteristics. Ocean vehicles, however, may

experience significant lags in their inertial positional information that limit their reaction

times. This thesis investigates the effects of these lags on guidance and control. The

relationship of critical visibility versus the controller time constant and its effect on the

stability of the guidance/control scheme is analyzed. Results are presented based on time

domain and frequency response techniques using a dynamic model of the Naval

Postgraduate School Autonomous Underwater Vehicle II (NPS AUV II), for which a

complete set of hydrodynamic coefficients and geometric properties is available.
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I. INTRODUCTION

A. BACKGROUND

Marine vehicles that require high maneuverability, such as

hydrofoils, require quick response, control and guidance to

maintain accurate track keeping characteristics. This is

accomplished through successful path planning, navigation,

guidance and autopilot design [Ref. 1].

Sufficient information is obtained from charted obstacles

and the environment for smooth paths to be generated for the

vehicle to follow [Ref. 2]. A certain level of feedback is

provided through the use of sonar and acoustics in order to

replan a path when uncharted obstacles are encountered or when

the mission objectives are changed. Based on inertial

positional information, the guidance law provides the

appropriate vehicle heading by suitable use of the vehicle

effectors such as rudders, dive planes, and cross body

thrusters. However, lags in obtaining and processing inertial

positional information can limit vehicle reaction time. In

addition, the guidance law must be as fast as possible in

order to ensure accurate path keeping characteristics [Ref.

3]. Therefore, the stability of the combined guidance/control

scheme becomes an issue that needs to be analyzed.



B. OBJECTIVE OF THIS THESIS

This thesis investigates the effects of positional

information time lags on guidance and control. The

relationship of the critical visibility (minimum vehicle

lookahead distance) versus the controller time constant and

its effect on the stability of the combined guidance/control

scheme is analyzed. Results are presented based on

computations using time domain and frequency response

techniques. All computations are performed for a dynamic

model of the NPS AUV II [Refs. 4 and 5] for which a complete

set of hydrodynamic coefficients and geometric properties is

available.

C. THESIS OUTLINE

Chapter II presents the vehicle equations of motion in the

horizontal plane, the equations that govern steering control,

and the guidance scheme used in this research.

Chapter III presents the stability analysis based on

eigenvalue computation of the combined guidance and control

scheme developed in Chapter II. Results are presented based

on the stability curves developed for first, second and third

order approximations for time lag in the commanded vehicle

heading in the control law.

Chapter IV presents an exact computation of the stability

curves based on frequency response methods, which utilizes the

Nyquist criterion for stability.
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II. EQUATIONS OF MOTION, CONTROLLER DESIGN AND GUIDANCE SCHEME

A. INTRODUCTION

The equations of motion that describe maneuvering of a

marine vehicle in the horizontal plane are presented in this

chapter. A linear full state steering feedback control law is

designed based on the three equations in sway, yaw, and rate

of change of heading angle. The guidance scheme is based on

pure pursuit guidance for path following along straight line

segments.

B. EQUATIONS OF MOTION

Restricting our attention to motion in the horizontal

plane (steering control), the mathematical model consists of

the nonlinear sway and yaw equations of motion only. With a

moving coordinate frame fixed at the vehicle's geometric

center, Newton's equations of motion are

m(r+ur+xGt-yGr2)=y (2.1)

IZt+mxG(v+ur) -myvr=N (2.2)

3



where v and r are the relative sway and yaw velocities of the

moving vehicle with respect to the water; m is the mass of the

vehicle; x,, y. are the respective lateral and longitudinal

positions of the center of gravity; and Y,N represent the

total excitation sway force and yaw moment, respectively.

These forces can be expressed as the sum of quadratic drag

terms and first order memoryless polynomials in v and r, which

represent the added mass and damping due to the vehicle's

motion through the water. In this way, Y and N can be

represented by

Y= P •yt+Ej, (Y&+Yrur) +y,2y uv
2 ±2 2

2i D~ h (E) Tv-+t-rT 282

N I PQNt t+ 11 (N.,T;,N.,ur) +_E13N uv
2 ±2 V2

(v+Er) 3 P 13Nu28
2J taiiC ht ITv-+f.rI 9 2 O2

where I is the vehicle length, and Y,, N, represent partial

derivatives of Y and N with respect to a, Cy is the drag

coefficient, and 8 is the rudder angle.

Equations (2.1) and (2.2) can be nondimensionalized with

respect to the constant forward speed u, and the vehicle

length I; with the dimensionless time variable being tu/1.

4



The cross flow integral drag terms become important for

hove.ing operations or low speed manuevering, whereas at

relatively high speeds and low angles of attack (with respect

to the water), the steering response is predominantly linear.

The model becomes complete with the addition of the

expressions for the vehicle yaw rate

*=r (2.3)

and the inertial position rate (horizontal plane)

k=usin*r+vcos* (2.4)

where V is the heading angle as shown in Figure 1.

Equations (2.1), (2.2), and (2.3) can be written as a set

of three coupled linear differential equations of the form

*=r (2.5a)

ý=-a11 uv+a12 ur+bj u 28 (2.5b)

t=a 12 uv+a22ur+b2u 28 (2.5c)

5
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Figure 1. Vehicle Geometry and Definition of Symbols.
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where the coefficients aij and bi are functions of the vehicle

hydrodynamic and geometric properties, AV is the heading angle

and 8 is the rudder angle.

The linearized form of equation (2.4) at a nominal u is

y=uW+v (2.6)

Hence, the final set of linearized equations of motion used

for steering control are

(2.7a)

r=_a 11 uv+a12 ur+bju 28 (2.7b)

t=a 12uv+a 22ur+b2u 28 (2.7c)

y=u*+v (2.7d)

at any nominal u.

This system of equations becomes the basis for the

controller design.

7



C. CONTROLLER DESIGN

Equations (2.7a), (2.7b), and (2.7c) govern the steering

control of the model used in this research.

These equations can be represented in the form

x=Ax+bB (2.8)

where the state vector equation is

x= [*,v,r]T (2.9)

Linear full state feedback is introduced in the form

8=ki(4-4,) +k2v+k 3 r (2.10)

where ic is the commanded heading angle, and the gains kj, k2,

k3 are computed by pole placement such that the closed loop

system of equations (2.8), (2.10) has the desired dynamics.

The existence of the difference (i-•) in the control law

(2.9) has the effect of trying to point the vehicle's

longitudinal axis towards the desired heading.

If the desired characteristic equation is selected so that

its time constant is t, dimensionless seconds, its general

form becomes

8



13+a I2 +g2+a3 = 0 (2.11)

where

2= 3=1tI c t 2 t 3
C C

The controller gains are computed from

a 3  (2.12a)
(b 2a11 _-ba 21 ) u3

(bia2-b2a) u3k2 + (b2a 11-bla 21) u 3 k 3 =a 2 +b 2 u 2kl (2.12b)

blu 2k2 +b2 u2 k 3=-al- (a11 +a22 ) u (2.12c)

Due to the explicit dependence on u, the gains kj, k 2 , k 3 are

continuously updated for different nominal forward speeds.

D. GUIDANCE SCHEM

The guidance scheme used in this research is an

orientation based command scheme. In this scheme, the

9



commanded vehicle heading angle W, is a function of the line

of sight angle a between the actual vehicle position and a

reference position on the nominal path which is located at a

constant lookahead or visibility distance d ahead of the

vehicle as shown in Figure 1.

This line of sight angle is defined by

tand=-- (2.13)d

The autopilot is then called upon to deliver the commanded

heading angle Ic- The simplest orientation guidance law is

pure pursuit guidance where the commanded heading angle Nf in

the control law (2.9) equals the line of sight angle a in

(2.13).

Then Ayc is defined by

= arctand (2.14)

For relatively small angles

'C= -arctanZ -XY (2.15)
d d

10



This results in a three state heading autopilot design

which can exhibit very robust characteristics. However, the

stability of this scheme may become an issue when transiting

along straight line segments since the commanded heading angle

is a function of the vehicle response, i.e., autopilot

response is limited by time lags in vehicle dynamics. We will

next examine the stability of this scheme.

11



III. EIGENVALUE ANALYSIS

A. INTRODUCTION

In this chapter, we present the stability analysis, based

on eigenvalue computation, of the combined guidance and

control scheme developed in Chapter II. A brief presentation

of the stability curve is developed first for the case of zero

time lag. Incorporation of a nonzero time lag in the

positional information formally results in an infinite state

space system. This is truncated into first, second, and third

order approximations. The resulting eigenvalue problems are

then analyzed with emphasis on stability curves.

B. STABILITY CONSIDERATIONS AND TIME LAG

1. Stability Considerations

In pure pursuit guidance, where the commanded heading

angle 4Ic in the control law equals the line of sight angle a,

the trivial equilibrium state which corresponds to straight

line motion is characterized by

*=v--r=y=O (3.1)

Linearization of the state equations in the vicinity of (3.1)

12



produces the linear system

k=Ax, (3.2)

where the complete state vector is

x=[, v,r,y] T (3.3)

Local stability properties of (3.1) are then established by

the eigenvalues of A. The characteristic equation of (3.2) is

a quartic of the form

1 4+BX3 +C•X2 +DA+E=O, (3.4)

where the coefficients B, C, D, E are functions of the vehicle

properties, the lookahead distance d, and the controller gains

kI, k2, k3 . A pair of complex conjugate roots of (3.4) crosses

the imaginary axis when the following conditions are met

[Ref. 61.

BCD-B 2E-D2 =O, (3.5a)

D>ý0 (3.5b)
B

13



These two conditions (3.5a) and (3.5b) translate to

aid 2 +a2d+a 3 =0, (3.6a)

d > bia 22 -b 2a 12 -b 2  (3.6b)b2aii-bia2l

where

ai=OaiU2-ff3 (3.7a)

(Ca9 2-2ae) (bja22-b 2a1 2-b 2) blala3 U (3.7b)a2-b2al, -bla 21 (b2ajj-bja2d) U1

a3 = - (bla22 -b 2a 12 -b 2 ) [blo,+ (bla22 -b 2a 12 -b 2 ) U1] V (3.7c)(b2ajj -bla2l )2•U

The conditions (3.5a) and (3.5b) determine the critical

visibility dcrit for stability. For d > dcrit, the equilibrium

state (3.1) is stable which means that the control law will

drive and keep the vehicle onto the straight line path. For

d < denit, the equilibrium state loses its stability and the

vehicle response becomes oscillatory as a result of the pair

14



of complex conjugate eigenvalues with positive real parts.

Results of the critical visibility versus the

controller time constant t- for zero time lag are presented in

Figure 2. As expected, the higher values of t, (i.e.,softer

controller) require higher lookahead distances d for path

accuracy. This agrees with existing guidelines that the

guidance law must be sufficiently slower than the controller

in order for the dynamics of the two not to interfere with

each other and, therefore, guarantee stability of the combined

scheme. Very high values of d correspond to a very slow

guidance law with a loss in speed of response and path

accuracy [Ref. 1].

2. Time Lag

In ocean vehicles, all states needed in the control

law are readily available at the required rate, with the

possible exception of the positional information y (Figure 1).

The latter may require a significant data analysis and

reduction of sonar returns and inertial navigational

information. As a result, it is likely that a time lag will

exist in the positional information y which is used in the

guidance law.

With the introduction of a time lag T (sec), the commanded

rudder angle ' in the pursuit guidance control law becomes

15
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d

Figure 2. Critical Visibility Distance d versus t, for

Zero Time Lag T.
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C -arctan Y(tT) (3.8)d

and for relatively small angles

_y(t-T) (39)

The resultant rudder control law (2.9) becomes

8 =kl +k d y(t-T)+k2 v+k3 r (3.10)d

After some algebra, the resultant linearized equations of

motion (2.7a), (2.7b), (2.7c), (2.7d) become

4;:r (3 .lla)

blu 2k1 * + (all u+bl u2k2 ) v+(al2u+bl u 2 k 3 )r+bl u2- y(t-T) (3.11b)
d

t=b2 u2k 1 * + (a 21u+b 2 u2k 2 )v+(a 22u+b 2 u2k3) r+b 2 u2' ky(t-T) (3.1lc)

17



k=u*+v (3.lld)

The Taylor expansion for the term y(t-T) is

y(t-T) - y-2ýT-2 T 3  (3.12)
2 Y6 +'

We can now examine the stability of the previously developed

control scheme for first, second and third order

approximations for time lag in the control law.

C. FIRST ORDER APPROXIMATION FOR TIME LAG

For a first order approximation for time lag T

y(t-T i"y- '-Tk (3.13)

where

y=ul,+v (3.14)

After some algebra, the resultant linearized equations of

motion (3.11a), (3.11b), (3.11c), (3.11d) become

18



•=r (3 .15a)

(bzu 2k 1 -bju 3 k 1 T)+ (a1 1 u+bzu k2,-bzu1 k-71 v+ (al 2u+blu2k) r+bu2 3 .15b)

f__d (bu-dbu kz2 kdbul•Y( 3 . 15b)

t= (b~u~k-b 2 -U3 k71 *+ (a2zu+b 2 u2 k2 -bzu2 k1 7v+ (a 22 u+b2 uZk 3 ) r~b2U2

,=u* +v (3.15d)

The state space form of the equations of motion is

k=Ax (3.16)

In matrix form, (3.15a), (3.15b), (3.15c), (3.15d) become

0 0 1 a
(bu~,-b U~k'71(aiiu+biuk2 -biu' k 'nT (a,,u+biu2k3 ) (biu2 k 1) v

abuk1u -a) d CT (3.17)

t (b2u2k1.-b~u3k 71 (82 u,U b2U2k3-b 2U2 k'1 a&2~i~3 bUki)

y 0 0

The standard eigenvalue problem (3.17) is solved to

determine numerically the critical d versus tc curve for a

given value of T. Appendix A presents the program used for

19



the first order approximation for time lag.

Figure 3 shows the resulting stability curves for the

first order case. It shows the relation between the critical

visibility d and the controller time constant t, for values of

time lag of 0.0, 0.5, 1.0, 1.5 and 2.0 seconds.

As expected, the stability curve shifts to the right with

increasing values of time lag. For the same time constant to,

the critical visibility distance increases with corresponding

increases in the amount of time lag.

D. SECOND ORDER APPROXIMATION FOR TIME LAG

For a second order approximation for time lag T, we have

y(t-T) = y-TJ'+-y (3.18)
2

where

y=u*+v, -=ur+v (3.14), (3.19)

Following some algebra, the resultant linearized equations of

motion (3.11a), (3.11b), (3.11c), (3.11d) become

20
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0 .5 -.................. .. .. ... ........ ....... .. ... ... ....... .. .... ..... . .......... ... ...

I I I

0
0 0.5 1 1.5 2 2.5 3

d

Figure 3. First Order Approximation For Time Lag:

Critical visibility Distance d versus t,, f or

Time Lags T = 0.0, 0.5, 1.0, 1.5, 2.0 sec.
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r=r (3 .20a)

=-A21* +A22v+A23 r+A 24y (3 .20b)

t=A31 +A32 v+A33r+A 34y (3 .20c)

y=u*+v (3.20d)

where

bl u2kl-bl u3- kT
A21 - I

1-b u 2 T 2

a1iu+b u 2k2 -bl u k aT
A22 =k 1-b u 2 k T 2

a 12 u+bl u 2 k 3 +bl U3--'dT2
A23I 2 kl T22

1-blu22d T

22



blu2 2

A24  k
1 -bi u T

(b, u2kl-bu3 k T)
A33. =bUklb U3 1, T1+(22k d

d Td- (1-bl U 2 k T 2)

(alu+biu2k 2 -bluz kd
A32 =(a 2 1 u+b2 u2k2 -b 2 u2  T) + (b2u2 k T2 ) d

d (I -bl U2-k T2)
2 d

k k (a 2u+bu 2k3 +bJu3k 1T2)
A33 = (a 2 2 u+b2 u2k 3+b 2u3 T2) + (b 2 u 2 •T T2 ) 2d

2d 2d

(blu 2k1 )
A34 = (b2U2 kk1) +(b2 (U2bku-_)dT)

(b~~2 dd

As with the first order case, the state space equations of

motion reduce to

23



k=Ax (3.16)

In matrix form, (3.20a), (3.20b), (3.20c), (3.20d) become

S 0 0 1 0

A2  A22 A23 A24  V
(3.21)

t A31 A32 A33 A4 r

1 0 0 Y

Simular to the first order case, the standard eigenvalue

problem (3.21) is solved using Fortran programming and MATLAB

in order to develop the stability characteristics of the

second order case. Appendix B presents the program used to

develop the stability characteristics for this case.

Figure 4 shows the resulting stability curves for this

case. The results of the critical visibility d versus the

controller time constant tc for time lags of 0.0, 0.5, 1.0,

1.5 and 2.0 secs are shown.

As with the first order case, the higher values of tc

require higher lookahead distances d for path accuracy. High

values of d correspond to a slow guidance law with a loss in

speed of response and path accuracy, and the stability curve

shifts to the right with increasing values of time lag.

24
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d

Figure 4. Second Order Approximation For Time Lag:

S Critical visibility Distance d versus t. for

Time Lags T = 0.0, 0.5, 1.0, 1.5, 2.0 sec.
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However, due to being more accurate than the first order case,

the second order approximation provides tighter stability

curves for the same time lags.

Z. THIRD ORDER APPROXIMATION FOR TIME LAG

For a third order approximation for time lag T

T2")i.Y 7ý+1ýý T3-7 (3.22)y~-T iy-Tz+--y---•y

2 6

where

k=ur+v, 9=ur+ý', J7=ut+V, (3.14), (3.19), (3.23)

After a considerable amount of algebra and following a simular

procedure as with both the previous two cases, the resultant

linearized equations of motion reduce to the state space form

Bx=Ax (3.24)

or

!=B -Ax

26



The resultant linearized equations of motion (3.11a),

(3.11b), (3.11c), (3.11d) become

*-r (3.25a)

B33t +B35r2 = A31*+A32 v 1+A33v2 +A3 4 r+A3,y (3 .25b)

B5 3t+B55T'2 = A 1,*+A, 2 v1 +A53v2 +A54 r+As5y (3. 25c)

k.=u* +vi (3.25d)

T' = V2 (3.25e)

where

kl
B33 = blu 3 -k-T 3

6d

k2 T 3Bs = bu 2 -•T 3

16d

A31 = b u 2ki-blu 3-- T

27



A32 =a 11u+blu 2k2-blu 2 'k- T
d

A33 =al 2u+blu
2k3+b1 u

3 kl T2
2d

A34 =bI2k

A35 =b2 lT-
2d

and

B53 = 1+b2u3 kT3

B55 = b2U2 lT

6d

A52 = a2lu+b2U2k2-b2U2-'-21Td

28



A53 - a 22 u+b2 u2 k 3 +b2u'-ý- T2

2d

As4 =b u -

A55  b2u2 2d

In matrix form, (3.25a), (3.25b), (3.25c), (3.25d), (3.25e)

become

1 0 0 0 0 0 0 1 0 0o

0 1 0 0 0 10, 0 0 0 0 1 v,

0 0 B33  0 B 35  t = A 31  A32 A33  A34  A35 r (3.26)

0 0 0 1 0 k u 1 0 0 0 y

0 0 B53 0 B55  v2 As, A 52 -%3 A4 ASS V2

Simular to both the first order and second order cases,

the generalized eigenvalue problem (3.21) is solved using

Fortran programming and MATLAB in order to develop the

stability characteristics for the third order case. Appendix

C presents the program used to develop the stability

characteristics for this case.

Figure 5 shows the resulting stability curves for this
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Figure S. Third order Approximation For Time Lag:

Critical visibility Distance d versus t, for

Time Lags T = 0.0, 0.5, 1.0, 1.5, 2.0 sec.
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case. The results of the critical visibility d versus the

controller time constant tc for time lags of 0.0, 0.5, 1.0,

1.5 and 2.0 seconds are shown. As with the first and second

order cases, the higher values of tc require higher lookahead

distances d for path accuracy, high values of d correspond to

a slow guidance law with a loss in speed of response and path

accuracy, and the stability curve shifts to the right with

increasing values of time lag. However, due to being more

accurate than either of the other two cases, the third order

approximation provides the tightest stability curves for the

same time lags.

F. COMPARISON OF RESULTS

Results of the critical visibility d versus the controller

time constant tc for first, second and third order

approximations for time lag have been obtained. Figures 3, 4

and 5 presented the stability curves for first, second and

third order approximations for time lags of 0.0, 0.5, 1.0, 1.5

and 2.0 secs. These figures have shown that stability of the

control scheme decreases with increasing time lag, and for the

same time constant, the critical visibility distance increases

with increasing time lag.

Figures 6, 7, 8 and 9 present a comparison of first,

second and third order approximations for each time lag

considered. These figures show that for each time lag, the

third order model presents the largest region of stability for
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Figure 6. Critical Visibility Distance d versus t. for

First, Second and Third Order Approximation

Cases and Time Lag T =0.5 sec.
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Figure 7. Critical visibility Distance d versus t~, for

First, Second and Third Order Approximation

Cases and Time Lag T =1.0 sec.
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Figure 8. Critical Visibility Distance d versus t, f or

First, Second and Third Order Approximation

Cases and Time Lag T = 1.5 sec.
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Figure 9. Critical Visibility Distance d versus t, for

First, Second and Third order Approximation

Cases and Time Lag T = 2.0 sec.
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vehicle straight line path accuracy. In addition, for the

same time constant, the critical visibility is least for the

third order case. This demonstrates that the minimum

lookahead distance required for straight line motion stability

decreases with controller time lag accuracy.

It can be seen that the first order approximation is the

most conservative for design purposes since it predicts the

highest required minimum visibility distance. As expected,

the differences among the three approximations are more

pronounced as the time lag increases and as the controller

time constant becomes smaller; i.e., tighter control.

Figures 10, 11, 12 and 13 present the differences in

critical visibilities among first, second and third order

approximations for each individual time lag considered. A

comparison of these figures demonstrates that the difference

in critical visibility between respective orders (time lag

models) decreases with decreasing time lag. This indicates

that for low time lags, controller time lag accuracy is not as

crucial for maintaining vehicle straight line path accuracy as

that of higher time lags. The greater the time lag, the

greater the difference in critical visibilities among time lag

models, and the more crucial is the controller time lag

accuracy for stability.

In general, if the guidance law is slow enough to allow

sufficient time for the controller to react, stability of

straight line motion is guaranteed [Ref. 1].
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First, Second and Third Order Cases.
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G. NORMALIZATION OF RESULTS

In an attempt to characterize the stability analysis

results for all values of time lag, we proceed as follows: If

the vehicle side slip velocity v is very small so that it can

be neglected, the equations of motion (2.7a), (2.7b), (2.7c),

and (2.7d), take the form

.t=a22ur+b2 u 28

since v = 0. The control law is

where the first order approximation for the commanded heading

angle is

d

Based on the above equations, we can get the characteristic
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equation of the system as

s 3 - (a2 2 u+b 2k 3u 2 ) s 2 - (b2k, u 2 -b 2k, U3 T1 ) s-b2klU3 -.

Applying Routh's criterion to this cubic equation, we find

that loss of stability occurs when

(a22 u+b 2k3 u2 ) (b 2k, u 2b 2ku3 T-) -b2ku -a,

from which we can get the critical visibility distance

d 1 Tu (3.27)
a 22 +b2k3 u

Equation (3.27) can be written as

dT-do = U (3.28)
T

where do is the critical visibility distance for T = 0, and dT

the critical visibility distance for a nonzero T. In

dimensionless quantities, equation (3.,28) is
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d -- 1 (3.29)

T

where u = 2.0 ft/sec is the vehicle speed, and Q = 7.3 ft is

the vehicle length.

A comparison among the approximate expression (3.29) and

the first, second, and third order approximations is shown in

figures 14, 15 and 16. The agreement is better for the first

order approximation, as expected, and also for the higher

controller time constant t,. This is because a high t. results

in soft vehicle response with negligible amounts of side slip.
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Figure 14. Normalized Critical Visibility versus t. for

First Order Approximation For Time Lags

T = 0.5, 1.0, 1.5, 2.0 secs.
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IV. FREQUENCY RESPONSE ANALYSIS

A. INTRODUCTION

The previous analysis using Taylor expansions of y(t-T)

breaks down for approximations beyond third order. The reason

for this is that for higher than third order expansions, the

matrix B in the generalized eigenvalue problem (3.23) becomes

singular. Therefore, it was felt that a different technique

should be sought in order to obtain an exact computation of

the stability curves and also to check the validity of our

calculations. In this chapter, we present a technique based

on frequency response methods, which utilizes the Nyquist

criterion for stability. The resulting equation is solved

using Newton's iteration.

B. NYQUIST CRITERION

From our previously developed model, the linearized

horizontal equations of motion are

4r=r (2.7a)

ý--a 11uv+a12 u.r+bju 28 (2.7b)
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t=a12uv+a22 ur+b2u 28 (2.7c )

y=u*+v (2.7d)

at any nominal u. The control law is

8=k1 (*-•c) +k2 v+k3r (2.10)

where the commanded heading angle is

*C._ y(t:-T) (3.9)d

The Laplace transform of equation (3.9) is

*= -- e(4.1)

and the resultant rudder control law (2.10) becomes

kl T
8=kj*+k2 v+k3r+--ye-T (4.2)

d

Following some algebra, the resultant linearized equations of
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motion (2.7a), (2.7b), (2.7c), (2.7d) become

(4.3a)

(b~,bu 1 * aub'2-,U k kv(l~llk)~uLy- (4 .3b)

t= bZ~k-bU3k271*+ a~U~2Uk2-bU2kl71V LaUk2 k,) +b~uk1.-T- (4. 3c)

yU1r+ v (4.3d)

Equations (4.3a), (4.3b), (4.3c), (4.3d) reduce to the state

space form

.k=Ax(3.16)

The matrix form becomes:

40 0 2.0

vr (blu 2k1) (a11u+b~u
2k.) (al2u+blu

2k3) (b, U2 k*-Te)v

t (b2U
2k1.) (a2lu+b2u

2k2) (a22u+b~ulk3) (b~ul ,e-e r

y 0 0
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The characteristic equation of the form [A-Is] = 0 becomes

after a considerable amount of algebra

S 4+A3S3+A2S2+A1S+(B2S2+B1S+E0)De-Ts = 0 (4.5)

where

A3  (al -C +a22) U -(blk2+b2k3) U2

A2 =(ajja 22-a12a21) U2 + (ajjb 2-a21b1) U3k3+ (a22b1-al2b2) U3k2-b2U2k1

Al = -(a. 2.b2-a22bj) U3k1De-TS- (a21.b1-_a1 b2) u
3k1

B2 =-bU 2 k,

B1  '4 ~ 3 k1

BO (a1 1 .b2 -a 2 1bj) u'k1

and

Dl-
d
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The characteristic equation of the system is written as

1 + KG(s) = 0 (4.6)

where

G(s) = (B2 s 2 +B1s+B,) e T  (47)
s (S3-A3S2+A2S+A1 )

is the transfer function, and we have denoted

K = D (4.8)

With s=j(o, the phase angle 0 is represented by

Z= LG(jr() (4.9)

and it follows that

S= z (e-JI) - L (jwc) + L (-B 2 
2+Bljw +BO) - L(_j A3_A 2+Ajca+A,)

= -. T- -E + tan-'( Bjw ) tan-'( -()3 +A2c() (4.10)
2 BO_-B2w12  -A3( 2+A)
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For stability, the Nyquist criterion states (Figure 17) that

at the solution of the equation

) _ -• (4.11)

which is phase cross over frequency (o = (o, the gain margin

must be equal to 1

IKG(jwij) I = 1 (4.12)

where K = D = i/d. It follows that equation (4.11) becomes

-W 2+tan-' _ -tan-'1( A+A) = -7 (4.13)

Rearranging, we get

B co -CO +A2------/ () 1 •+•+
tan-1 ( BoB2 )-tan-' ( _A9l+A 2 -l) =

BO -B 2  -3() A 2

Taking the tangent of both sides and using the identity

tan (x-y) = tan(x) -tan(y)
1+tan (x) tan (y)
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Figure 17. Example of the Nyquist Stability Criterion For

Three Different Values of Gain [Ref. 71.

53



and rearranging following some algebra, the result becomes

BI,�I 1(A 1-A3 I)) -(B 0-E2r)) (-)'+A2() _ 1

From equation (4.12), it follows that

1 I-B2r1+BiJ 1+Eol =+1
-8 ~ •iI-•-A3• 1•• +A,

Solving for d, we get

d = - (Bo-B - 1+B ri (4.15)

ca1V(Aj-A3(~~ 1 (A2(01-w~

With a time lag T = 0, we get from equation (4.14)

(B0-Bs ) (A3 1+A) + B1 1(-, +A•w,) = 0

Rearranging, we get

(B2A 3 -Bd)r4 + (B 1A 2-BA-BOA3 ) W1 + BA = 0 (4.16)
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Equation (4.16) can be solved exactly for 0. and then d

can be computed from (4.15). This zero time lag calculation

was performed in order to validate the results of d versus t,

for the zero time lag solution of equation (3.6). The results

using the two different techniques were found to be identical.

C. ALGORITHM DESCRIPTION

Introducing the terms

a, -- B2A3 -B,

4Z2 = BA-2,BA

(Z3 =BOAI

and

I- -B2

P3 B1A-B 0 A2

P2 = BO+B 2A2-B1 A,
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Then equation (4.12) becomes

_6)5+_ 2 (3÷+P 3& 1 (4.17)
C1A) +cc 2 +a3 tan (( 71

Rearranging, we get

(. 1 )S+4i 2
3 +P33()tan(A7r) + a3(4+a2 + W2 = 0 (4.18)

Equation (4.18) is now in the form

f(W) = 0 (4.19)

Following Newton's iteration for co, we have

= Ok-1 f(•k-1) (4.20)
Pf (Ok-1)

From equation (4.20),

f((a) = (PlW5+P2 (3 +P3C) sin ((o (4.21)

+ (aICAa+a 2W2 +£3 ) cos (W71
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and

fl((.)) = (50 1 '4+30 2 C 2+ P 3)sin((T)

+ ( 01 (05 2 2 ) TCOS (C T) (4 .2 2 )

+ (4a 1 3 +2a2CO) cos (T)

- (aIW4+a 2W2+a 3 ) Tsin(w2")

Fortran programming and MATLAB were used in order to

develop the stability characteristics for the Newton's

iteration method. Appendix D presents the program used to

develop the stability characteristics for this case.

Figure 18 shows the resulting stability curves for the

Newton's iteration method. The results of the critical

visibility d versus the controller time constant t, for time

lags of 0.0, 0.5, 1.0, 1.5, and 2.0 secs are shown.

As with the first, second and third order approximation

cases, the higher values of t, require higher lookahead

distances d for path accuracy, high values of d correspond to

a slow guidance law with loss in speed of response and path

accuracy, and the stability curves shift to the right with

increasing values of time lag. However, since the Newton's

iteration method presents the exact solution of the frequency

response to equation (4.19), the resulting stability curves
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Figure 18. Newton's Iteration Method: Critical visibility

Distance d versus t, for Time Lags T = 0. 0,

0.5, 1.0, 2.0 oecs.
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represent the precise stability characteristics for these time

lags.

D. RESULTS AND DISCUSSION

Results of the critical visibility d versus the controller

time constant t, for the Newton's iteration method has been

demonstrated. Figure 18 presented the precise stability

curves for time lags of 0.0, 0.5, 1.0, 1.5 and 2.0 secs.

This figure, as well as those for the first, second and

third order approximation cases, demonstrates that the

stability of the control scheme decreases with increase in

time lag and for the same time constant, critical visibility

increases with increase in time lag.

Figures 19, 20, 21, 22 and 23 present a comparison of

generated stability curves among the Newton's iteration method

and those for the first, second and third order approximation

cases for time lags of 0.0, 0.5, 1.0, 1.5 and 2.0 secs. It

can be seen that there is-barely a slight difference in the

stability curves for the Newton's iteration method case and

the third order approximation case. This indicates that a

third order approximation for time lag presents the best model

for accounting for a positional information time lag in the

vehicle control law.
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Figure 19. Critical Visibility Distance d versus t. for

Newton's Iteration Method and First, Second and

Third Order Approximations; T = 0.0 sec.
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Figure 20. Critical Visibility Distance d versus t. for

Newton's Iteration Method and First, Second and

Third Order Approximations; T = 0.5 sec.
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Figure 21. Critical visibility Distance d versus t,, for

Newton's iteration Method and First, Second and

Third order Approximations; T = 1.0 sec.
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Figure 22. Critical visibility Distance d versus t, for

Newton's Iteration Method and First, Second and

Third order Approximations; T = 1.5 sec.
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Figure 23. Critical Visibility Distance d versus t, for

Newton's Iteration Method and First, Second and

Third Order Approximations; T = 2.0 sec.
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CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A methodology for considering positional information time

lags in the control law for vehicle maneuvering in the

horizontal plane has been presented. The relationship of the

critical visibility versus the controller time constant for

both zero and non-zero time lags has been established.

Time lags have been approximated by first, second and

third order Taylor expansions in the commanded vehicle heading

in the control law. A comparison of the resulting stability

curves has demonstrated that the third order approximation

presents the greatest stability and the least critical

visibility for a given time lag. It was found that the first

order approximation was the most conservative for controller

design purposes since it predicted the highest required

critical visibility distance. In addition, the differences

among the three approximations became more pronounced with

increasing time lag and decreasing controller time constant

(tighter control).

Further analysis was conducted to characterize the

stability results for any value of time lag using a

normalization procedure and the first order approximation for

time lag in the commanded vehicle heading in the control law.
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A comparison of the normalized stability curves for each time

lag showed that the greatest differences occur with increasing

order and decreasing controller time constant. This is due to

a tight (quick) vehicle response with significant side slip at

lower time constants.

Frequency response techniques based on the Nyquist

stability criterion were used to produce the exact stability

curves for comparison with the previously generated Taylor

expansion stability curves. These results virtually matched

those obtained for the third order approximation time lag case

and validated our calculations and stability curves generated

for the case of zero time lag. These results indicated that

the third order approximation best represents a positional

information time lag in the control law, however for design

purposes, the first order approximation provides the most

conservative approach.

B. RECOMMENDATIONS

Some recommendations for further research are as follows:

* Experimental verification using the NPS AUV II.

* Consideration of time lag in the simulation of an Inertial

Navigation System required for positional updates.

Analysis of positional information time lags in the motion

stability in the vertical plane, along curved paths, or

with respect to other guidance schemes.
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APPENDIX A

C PROGRAM THESISI.rOR (Time Delay-Ist Order Approx)
C BIFURCATION ANALYSIS
C

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION Kl,K2,K3,L,NR,NV,NDRS,NDRB, IZ,MASSg

& NRDOT,NVDOT
DIMENSION A(4,4) ,FV1(4),IVI(4),ZZZ(4,4),WR(4) ,WI(4)

C
OPEN (ll,FILE-'BIFl.RES',STATUS-'NEW')

* OPEN (12,FILE-'BIF2.RES',STATUS-'NEW')
OPEN (13.,FILE-'BI73.RES',STATUS-'NEW')

C
C Vehicle Parameters:

WEIGHT-435 .0
Iz -45.0
L -7.3
RHO -1.94
G -32.2
KG -0.0104
MASS -WEIGHT/U

C
YRDOT =-.0.00l7B*O.5*RHO*L**4
YVDOT --0.03430*0.5*RHO*L**3
YR -+0.01187*0.5*RHO*L**3
YV =-0.03B96*0.5*RHO*L**2
YDRS -+0.02345*0.5*RHO*L**2
YDRB -+0.02345*0.5*RHO*L**2
NRDOT --0.00047*0.5*RHO*L**5
NVDOT --0.00178*0.5*RHO*L**4
NR --0.01022*0.5*RHO*L**4
NV --0.00769*0.5*RHO*L**3
NDRS --0.337*0.02345*0.S*RHO*L**3
NDRB -+0.283*0.02345*0.S*RHO*L**3

C
WRITE (*,100l)
READ (** TCMIN,TCMAX,ITC
WRITE (*41002)
READ (*,*) XDMIN,XDMAX,IXD
XDMIN-XDMIN*L
XDMAX-XDMAX*L
WRITE (*,1003)
READ (*) U

C
WRITE( *,100)
READ (*,*) TL

C
DH -( IZ-NRDOT)*(MASS-YVDOT)-

& (JIASS*XG-YRtDOT) *(JASS*XG-NVDOT)
AA11-( (IZ-NRDOT)*YV-(MASS*XG-YRDOT)*NV)/DH
AA12-( (IZ-NRDOT)*(-MASS+YR)-

&(M4ASS*XG-YRDOT)*(-MASS*XG.NR) )/DH
AA21-((MASS-YVDOT)*NV-(MASS*XG-NVDOT)*YV)/DH
AA22-( (MASS-YVDOT)*(-MASS*XG+NR)-

&(MASS*XG-NVDOT)*(-MASS+YR) )/DH
BBhl-( (ZZ-NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS)/Dil
BB12-((IZ-NRDOT)*YDRB-(KASS*XG-YRDOT)*NORB)/DH
BB21-( (MASS-YVDOT)*NDRS-(MASS*XG-NVDOT)*YDRS)/DH
BB22-( (MASS-YVDOT)*NDRB-(M4ASS*XG-NVDOT)*YDRB)/DH

C
WRITE (*,1004)
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READ (,) RATIO
C

BB1=B8h1+RATIO*DB12
BB2-BB21+RATIO*BB22

C
EPS -1.D-5
ILMAX-1500

C
DO 1 I-1,ITC
WRITE (*,2001) I,ITC0
TC-TClIIN+( I-I) (TCMAX-TCMIN)/( ITC-1)
TCD-TC *L/U
POLEC-1.0/TCD
ADI-3.O*POLEC
AD2-3.0OPOLEC**2
AD3-POLEC**3
Al-BBl *UJ*j
Bl-BB2*U*U
C1--ADI-(AA11+AA22 ) *U
A2-( BB1*AA22-BB2*AA12 ) *U**3
B2-(BB2*AA11-BB1*AA21 )*U**3
KI-AD3/( (BB2*AAII-BB1*AA21)*LJ**3)
C2-AD2-(AA11*AA22-AA12*AA21)*U**2+BD2*U*UAKI
K2-(Cl*B2-~C2*B1 )/(A1*B2-A2*B1)
K3-(C2*A1-C1*A2)/(A1*B2-A2*B1)
DO 2 J-1,IXD

XD-XDI¶IN+( J- ) *(XDNAX-XDMIN)/( IXD-1)
C

CALL LINEAR.( Ki,K2 ,K3,U,XD,AA11 ,AA12,AA21 ,AA22BBD1,BB2,A,TL)
CALL RG( 4,.4,A,WR,WI ,O,ZZZ, IV1,FV1, IERR)
CALL DSTABL(DEOS,WR,WI, FREQ)

C
IF (J.GT.1) GO TO 10
DEOSOO-DEOS
XDOO -XD
LL- 0
GO TO 2

10 DEOSNN-DEOS
XDNN -XD
PR-DEOSNN*DEOSOO
IF (PR.GT.O.DO) GO TO 3
LL-LL+l
IF (LL.GT.3) STOP 1000
IL-0
XDO-XDOO
XDN-XDNt4
DEOSO-DEOSOO
DEO8N-D6OSNN

6 XDL-XDO
XDR-XDN
DEOSL-DEOSO
DEOSR-DEOSN
XD-( XDL+XDR)/2.DO

C
CALL LINEAR(K1 ,t2,1C3,U,XD,AA11,AA12,AA21 ,AA22,BB1,BB2,A,TL)
CALL RG( 4, 4,A,WR,WI ,0,ZZZ, IV1,FV1,IERR)
CALL DSTADL (DEOS, WR, WI , REQ)

C
DEOSM-DEOS
XDM-XD
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PRL-DEOSL*DEOSM
PRR-DEOSR* DEOSM
IF (PRL.GT.O.DO) GO TO 5
XDO-XDL
XDN-XDM
DEOSO-DEOS L
DEOSN-DEOSM
IL-IL-il
IF (IL.GT.ILMAX) STOP 3100
DIF-DABS( XDL-XDM)
IF (DIF.GT.EPS) GO TO 6
XD-XDM
GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200
XDO-XDM
XDN-XDR
DEOSO-DEOSM
DEOSN-DEOSR
IL-IL+1
IF (IL.GT.ILMAX) STOP 3100
DI F-DABS (XDM-XDR)
IF (DIF.GT.EPS) GO TO 6
XO-XDM

4 LLL-10+LL
WRITE (LLL,*) XD/L,TC

3 XDOO-XDNN
DEOSOO-DEOSNN

2 CONTINUE
1 CONTINUE

C
1001 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF TC')
1002 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF XD')
1003 FORMAT ('ENTER U')
1004 FORMAT ('ENTER BOW/STERN RUDDER RATIO')
1100 FORMAT ('ENTER TIME LAG TL')
2001 FORMAT (215)

END
C

SUBROUTINE DSTABL(DEOS,WR,WI ,OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(4),WI(4)
DEOS--1 OD-e20
DO 1 1-1,4

IF (WR(I).LT.DEOS) GO TO I
DEOS-WR( I)
IJ-I

I CONTINUE
OMEGA-W ( 13)
OMEGA-DABS (OMEGA)
RETURN
END

C
SUBROUTINE LINEAR( 1(1,R2,K3,u,xD,AA11,AA12,AA21,AA22,BB1,BB2,A,TL)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION KI,K2,K3
DIMENSION A(4,4)
A(1,1)-0.ODO
A(1,2)-0.ODO
A(1,3)-1.ODO
A( 1,4 )-0 .0D0
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A12,1)- BBI*U*U*Kl*(XD-U*TL)/XD
A(2,2)-U*(BBIhUI*(K2*XD-KIhTL)+AAII*XD)/XD
A(2, 3)-AA12*U+BB1*U*UhK3
A(2,4)- BBI*U*U*K1/XD

A(3,1)-52 *U*U*Kl*(XD-U*TL),XD
A(3,2)-U*(BD2*UA(I(2*XD-Kl*TL)+AA2ihXD)/XD
A( 3, 3)-AA22*ueBB2*U*U*IC3
A(3,4)- BB2*U*U*Kl/XD
A( 4,1)-U
A( 4,2)-i .ODO
A(4, 3)-O.ODO
A( 4,4)-O.ODO
RETURN
END
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APPENDIX B

C PROGRAM THESIS2.FOR (Time Delay-2nd Order Approx)
C BIFURCATION ANALYSIS
C

IMPLICIT DOUBLE PRECISION (A-H,O--Z)
DOUBLE PRECISION Xl,K2,K3,LNR,NV,NDRS,NDRB,IZMASS,
& NRDOT,NVDOT
DIMENSION A(4,4) ,rv1(4),IV1(4) ,ZZZ(4,4) ,WR(4),WI(4)

C
OPEN (11,FILE-'BIF1.RES',STATUS-'NEW')
OPEN (12,FILE-'BIF2.RES',STATUS-'NEW')
OPEN (13,FILE-'BIF3.RES',STATUS-'NEW')

C
C Vehicle Parameters:

WEIGHT-435 .0
Iz -45.0
L -7.3
RHO -1.94
G -32.2
XG -0.0104
MASS -WEIGHT/G

C
YRDOT --0.0Oi7860.5*RHO*L**4
YVDOT --0.03430*0.5*RHO*L**3
YR =+0.01187*0.5*RHO*L**3
YV --0.03896*0.5*RHO*L**2
YDRS =+0.02345*0.5*RHO*L**2
YDRS =+0.02345*0.5*RJIO*L**2
NRDOT --0.00047*0.5*RHO*L**5
NVDOT =-0.00178*0.5*RHO*L**4.
NR --0.01022k0.5*RHO*L**4
NV --~0.00769*0.5*RHO*L**3
NDRS =-0.337*0.02345*0.5*RHO*L**3
NDRB -+0.283*0.02345*0.5*RHO*L**3

C
WRITE (*,1001)
READ (*,A) TCMXN,TCMAX,ITC
WRITE (*,1002)
READ (*,*) XDMIN,XDMAX,IXD
XDMIN=XDMIN*L
XDMAX-XDMAXAL
WRITE (*,1003)
READ (,) U

C
WRITE( *,1100)
READ (*,*) TL

C
DH -( IZ-NRDOT)*(M4ASS-YVDOT)-
& (MASS*XG-YRDOT) *(MASS*XG-NVDOT)
AAl1-f (IZ.NRDOT)*YV-(MASS*XG-YRDOT)*NV)/DH
AA12-( (IZ-NRDOT)*(-MASS.YR)-

(MASS*XG-YRDOT)*(-MASS*XG+NR) )/DH
A.A21-( (MASS-YVDOT)*NV-(MASS*XG-NVDOT)*YV)/DH
AA22-( (MASS-YVDOT)*(-MASS*XG+NR)-

£(MASS*XG-NVDOT)*(-MASS+YR) )/DH
B81i-( (IZ-.NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS)/DH
BB12-( (IZ-NRDOT)*YDRB-(MASS*XG-YRDOT)*NDRB)/DH
8521-( (MASS-YVDOT)*NDRS-.(MASS*XG-NVDOT)*YDRS)/DH
BB22-( (MASS-YVDOT)*NDRB-(MASS*XG-NVDOT)*YDRB)/DH

C
WRITE (*,1004)
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READ (*~ RATIO
C

UBo-BBI 1,RATIO*BB12
BB2-BB21+RATIO*BB22

C
EPS -1.D-5
ILMAX-1500

C
DO 1 I-1,ITC
WRITE (*,2001) I,ITC
TC-TCI4IN+( I-1)*(TCMAX-TCMIN)/( ITC-1)
TCD-TC*L/U
POLEC-1 .0/TCD
ADI-3 . 0POLEC
A02-3 .0*POLEC**2
AD3-POLEC**3
A1-BB1*U*U
B1-BB2 AU*
C1--ADI-(AAII+AA22 ) U
A2-(BB1*AA22-BB2*AA12)*iU**3
B2-(BB2*AAII-BBIAAA21 )*U**3
K1-AD3/( (BB2*AA11-BB1*AA21 )*UAA3)
C2-AD2-(AA11*AA22-AA12*AA21 )*LJ*A2+8B2*U*U*KI
K2-(ClhB2-C2*B1 )/(A1*B2-A2*B1)
K3-(C2*Al-C~I.A2 )/(A1*B2-A2ABl)
DO 2 J-1.IXD
XD-XDMIN+(J-1 )*(XDHAX-XDMIN)/( IXD-1)

C
CALL LINEAR( K1,K2,K3,U,XD,AA11,AA12,AA21,AA22,BB1,BB2,ATL)
CALL RG( 4,4,AWR,WI ,0,ZZZ, IV1,FV1, IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

C
IF (J.GT.1) GO TO 10
DEOSOO-DEOS
XDOO -XD
LL- 0
GO To 2

10 DEOSNN-DEOS
XDNN -XD
PR-DEOSNN*DEOSOO
IF (PR.GT.O.DO) GO TO 3
LL-LL+l
IF (LL.GT.3) STOP 1000
IL-0
XDO-XDOO
XDN-XDNt4
DEOSO-DEOSOO
DEOSN-DEOSNN

6 XDL-XDO
XDR-XDN
DEOS L-DEOSO
DEOSR-DEOSN
XD-(XDL+XDR)/2 .00

C
CALL LINEAR(KC1,K2,K3,UXD,A.A11 ,AA12,AA21,AA22,BBI,B82,A,TL)
CALL RG( 4, 4,A,WRWI ,0,ZZZ,lVI ,FV1, IERR)
CALL DSTABL(DEOS,WRWI ,FREQ)

C
DEOSM-DEOS
XDM-XD
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PRL-DEOSLADEOSI1
PRR-DEOSR*DEOSM
IF (PRL.GT.0.DO) GO TO 5
XDO-XDL
XDN-XDM
DEOSO-DEOSL
DEOSN-DEOSM
IL-IL+l
IF (IL.GT.ILMAX) STOP 3100
DIF-DABS( XDL-XDM)
IF (DIF.GT.EPS) GO TO 6
XD-XDM
GO TO 4

5 IF (PRR.GT..0.DO) STOP 3200
XDO-XDM
XDN-XDR
DEOSO-DEOSM
DEOSN-DEOSR
IL-IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF-DABS( XDM-XDR)
IF (DIF.GT.EPS) GO TO 6
XD-XDM

4 LLL-10+LL
WRITE (LLL,*) XD/L,TC

3 XDOO-XDNN
DEOSOO-DEOSNN

2 CONTINUE
1 CONTINUE

C
1001 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF TC')
1002 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF XD')
1003 FORMAT ('ENTER U')
1004 FORMAT ('ENTER BOW/STERN RUDDER RATIO')
1100 FORMAT ('ENTER TIME LAG TL')
2001 FORMAT (215)

END
C

SUBROUTINE DSTABL(DEOS,WR,WI IOMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(4),WI(4)
DEOS--1 OD+20
DO 1 1-1,4

IF (WR(I).LT.DEOS) GO TO I
DEOS-WR( I)
13-1

1 CONTINUE
OMEGA-WI (13)
OMEGA-DABS (OMEGA)
RETURN
END

C
SUBROUTINE LINEAR(K1,K2,K3,U,XD,AA11,AA12,AA21,AA22,BB1 ,BB2,A,TL)

* IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION K1,1C2,K3
DIMENSION A(4,4)
A(l,l)-0.ODO
A(1,2)-0.ODO
A( 1,3)-I. ODO
A( 1,4 )-0. ODO
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A(2, 1)-(BBI*LJ*U*K1-BBI*U*U*U*K1.*TL/XD)/
& (1-BB1*tJ*U*Kl*TL*TL/(2.DO*XD))
A(2,2)-(AA11*U+BB1*U*U*K2-BB1*tJ*U*Kl(1TL/XD)/
& (1-DBB1U*U*tC1*TL*TL/(2.DO*XD))
A(2,3)-(AA12*U+BB1*U*U*K3+BBIhU*U*U*K1*TL*TL/(2.DO*XD))/
& (IBBI*U*LJ*IC*TL*TL/( 2.DO*XD))

A( 2,4 )-(BBI*U*U*K1/XD)/
&(1-BB1*U*U*Kl*TL*TL/(2.DO*XD))

A( 3,1)-(BB2hU*U*K1-BB2*IJ*UIU*K1*TL/XD)e.
& (DD2*U*U*I(I*TL*TL/(2.DO*XD) )*
& (BB1*U*U*K1-BBI*U*U*U*KI(*TL/XD)/
& (I-BB1*U*U*Kl*TL*TL/(2.DO*XD))
A(3,2)-(AA21*U+BB2*UAU*K2-BB2*U*U*Kl*TL/XD)+
& (BB2*U*U*R1*TL*TL/(2.DO*XD))*~
& (AAII*U+BB1*U*U*K2-BBI*U*U*KlhTL/XD)/'
& (1-BBI*U*U*K1ATL*TL/(2.DO*XD))
A(3,3)-(AA22*U+8B2*U*U*K3+BB2*U*U*U*K1*TL*TL/(2.DO*XD))+

& (BB2*U*U*Kl*TL*TL/(2.DO*XD) )*
& (AA12*U+BB1*U*U*K3+BBI*U*U*U*K1*TL*TL,'(2.DO*XD) 1/

&(1-.BD1*U*U*Kl*TL*TL/(2.DO*XD))
A(3,4)-(BB2*U*U*Kl/XO),+(BB2*U*U*K1*TL*TL/(2.DO*XD))*
& (BBI*U*'JKIC/XD)/
& (I-BBD1*L*U*KlATL*TL/(2.DO*XD))
A(4,1)-U
A(4,2)-1.ODO
A(4,3)-O.ODO
A( 4,4 )-O.ODO
RETURN
END
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APPENDIX C

C PROGRAM THESIS3.FOR (Time Delay-3rd order Approx)
C BIFURCATION ANALYSIS
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION 1(1,12,K13,L,NRNV,NDRS,NDRB, IZ,MASS,

& NRDOT,NVDOT
DIMENSION A(5,5),B(5,5) ,FV1(5),IV1(5) ,ZZZ(5,5),ALFR(5),

& ALFI(5),BETA(5),WR(5),wi(5)
C

OPEN (11,FILE-DBIF1.RESI,STATUS-FNEWU)
OPEN (12,FILE-'B1F2.RES',STATLJS-'NEW')
OPEN (13,FILE-'BIF3.RES',STATUS-'NEW')

C
C Vehicle Parameters:

WEIGHT-4 35.0
1Z -45.0
L -7.3
RHO -1.94
G -32.2
XG -0.0104
MASS -WEIGHT/G

C
YRDOT --O.00l78*0.5*RHO*L**4
YVDOT --~0.03430*0.5*RHO*L**3
YR -+.0.187*O.5kRHO*L**3
YV --O.03896*0.5*RHO*L**2
YDRS -+0.02345*0.5*RHO*L**2
YDRB -+0.02345*0.5*RHO*L**2
NRDOT --.0.00047*0.5*RHO*L**5
NVDOT --0.00l78*0.5*RHO*L**4
NR --0.01022*0.5*RHO*L**4
NV --0.00769*0.5*RHO*LA*3
NDRS --0.337*0.02345*0.5*RHO*L**3
NDRB -+0.283*0.02345*0.5*RHO*L**3

C
WRITE (*,1001)
READ (*,*) TCMIN,TCMAX,ITC
WRITE (*,1002)
READ (*,*) XDMIN,XDMAX,IXD
XDMIN-XDMIN*L
XDMAX-XDMAXA L
WRITE (*,1003)
READ (*,*) U
WRITE( A,1100)
READ (*,*) TL

C
DHI -( IZ-NRDOT)*(MASS-YVDOT)-

& (MASS*XG-YRDOT) * ( 4SS*XG-.NVDOT)
AAII-( (IZ-NRDOT)*YV-(MASSAXG-YRDOT)*NV)/DH
AAI2-( (IZ-NRDOT)*(-MASS+YR)-

& CMASS*XG-YRDOT)*(-MASS*XG+NR) )/DH
AA21-((MASS-YVDOT)*NV-(MASS*XG-NVDOT)*YV)/DH

* ~AA22-( (MASS-YVDOT)*(-IIASS*XG+NR)-
&(MASSkXG-NVDOT)*(-MASS+YR) )/DH

BBI1-( (IZ-NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS)/DH
5B12-( (IZ-.NRDOT)*YDRB-(MASS*XG-YRDOT)*NDIRB)/DH
flB21-( (MASS-YVDOT)*NDRS-(MASS*XG-~NVDOT)*YDRS)/DH
B822-( (MASS-YVDOT)*NDRB-(MASS*XG-NVDOT)*YDRB)/DH

C
WRITE (*,1004)
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READ (,) RATIO
C

BelBBD11+RATIOhBB12
BBD2-B21+RATIO*BB22

C
EPS -1.D-5
ILMAX-1500

C
DO 1 I-1,ITC
WRITE (*,2001) I,ITC
TC-TCMIN+( I-I) *(TCM4AX-TCMIN)/( ITC-1)
TCD-TC*L/U
POLEC-1 .0/TCD
ADl-3. 0*POLZC
AD2-3 . OPOLEC**2
AD3-POLEC**3
AI-BB1 *U*U
D1-BB2*U*U
Cl--ADI-(AA11+AA22)*U
A2-(BB1*AA22-BB2*AA12) *U* $3
82-(BD2kAAII-BB1*AA21 )*U**3
Kl-AD3/( (BB2*AA11l-DB1*AA21)*tJ**3)
C2-AD2-(AA11*AA22..AA12*AA21 )*U**2+BB2*LJ*U*KI
K2-(Cl*B2-C2*B1 )/(Al*B2-A2*B1)
K3-(C2*AA1C1*A2 )/(Al*B2-A2*B1)
DO 2 J-1,IXD
XD-XDMIN+(J-1 )*(XDMAX-XDMIN)/( IXD-1)

C
CALL LINEAR(RI ,K2, K3,U,XD,AA11gAA12,AA21 ,AA22,BB1 ,BB2,A,B,TL)
CALL RGG(5, 5,A,B,ALFR,ALFI ,BETA,0,ZZZ, IERR)
DO 11 IJE-1,5
WR( IJE)-ALFR(IJE)/BETA( IJE)
tJI( IJE)-ALFI(IJE)/BETA( ZJE)

11 CONTINUE
CALL DSTABL( DEOS ,WR,WI, FREQ)

C
IF (J.GT.1) GO TO 10
DEOSOO-DEOS
XDOO -XD
LL-0
GO TO 2

10 DEOSNN-DEOS
XDNN -XD
PRmDEOSNN*DEOSOO
IF (PR.GT.0.DO) GO TO 3
LL-LL+ 1
IF (LL.GT.3) STOP 1000
IL-0
XDO-XDOO
XDN-XDNN
DEOSO-DEOSOO
DEOSN-DEOSNN

6 XDL-XDO
XDR-XDN
DEOSL-DEOSO
DEOSR-DEOSN
XD-(XDL+XDR)/2 .D0

C
CALL LINEAR(K1 ,I2,K3,U,XD,AA11,AA12,AA21,AA22,Dh1 ,B92,A,B,TL)
CALL RGG(5,5,ABALFR,ALFIBETAOZZZIERR)
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DO 12 IJE-1.5
WR( IJE)-ALFR( IJE)/BETAI IJE)
WI ( JE)-ALFI (IJE)/BETA( IJE)

12 CONTINUE
CALL DSTABL( DEOS,WR,WI ,FREQ)

C
DEOSM-DEOS
XDM-XD
PRL-DEOSL*DEOSM

* PRR-DEOSR'DEOSM
IF fPRL.GT.0.DO) GO TO 5
XDO-XDL

* XDN-XDM
DEOSO-DEOSL
DEOSN-DEOSM
IL-IL+l
IF (IL.GT.ILMAX) STOP 3100
DIF-DABS( XDL-XDM)
IF (DIF.GT.EPIS) GO TO 6
XD=XDM
GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200
XDO-XDM
XDN-XDR
DEOSO-DEOSM
DEOSN-DEOSR
IL-IL+l
IF (IL.GT.ILMAX) STOP 3100
DI F-DABS(XC -DM-XDR)
IF (DIF.GT.EPS) GO TO 6
XD-XDM

4 LLL-10+LL
WRITE (LLL,*) XD/L,TC

3 XDOO-XDNN
DEOSOO-DEOSNN

2 CONTINUE
1 CONTINUE

C
1001 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF TC')
1002 FORMAT ('ENTER MIN, MAX, AND INCREMENTS OF XD')
1003 FORMAT ('ENTER U')
1004 FORMAT ('ENTER BOW/STERN RUDDER RATIO')
1100 FORMAT ('ENTER TIME LAG TL')
2001 FORMAT (215)

END
C

SUBROUTINE DSTABL(DEOS,WR,WI IOMEGA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION WR(5),WI(5)
DEOS--1 OD+20
DO 1 1-1,5

IF (WR(I).LT.DEOS) GO TO 1
DEOS-WR( I)
IJ-I

I CONTINUE
OMEGA-WI( IJ)
OMEGA-DABS (OMEGA)
RETURN
END

C
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SUBROUTINE LINEAR(K1(, K2,I(3,U,XD,iAA11,AA12,AA21,AA22,5B1 .BB2,
£ A,B,TL)

IMPLICIT DOUBLE PRECISION (A-.H,O-Z)
DOUBLE PRECISION K1,K2,K3
DIMENSION A(5,5),B(5,5)
A 1,11-0. ODO
AC 1,21-0. 0D0
A( 1,3)-i .000
A(1,4)-0.000
A(1,5)-0.ODO
AC 2,11-0. 000
AC 2, 2)-0.000
AC 2,31-0. 000
A(2,4)-0.ODO
A(2,5)-1 .000
A(3,1)-(BB1*U*U*Kl-BB1*U*U*U*KI(*TL/XD)
A(3,2)-(AAII*U+BBI*U*U*K2-BB1*U*U*K1*TL/XD)
A(3,3)-(AA12*U+BBI*U*U*K3+BBIAU*UAU*Kl*TL*TL/(2.DO*XD))
A( 3,4 )-(BB1AU*U*K1/XD)
A(3,5)-(-1.D0+BB1AU*U*Kl*TL*TL/(2.DO*XD))
A( 4,1)-U
A( 4,2)-i. 000
AC 4,3 )-0.ODO
AC 4,*41=0.000
A( 4,5)-0. 000
AC 5,1 )-(BB2*U*U*K1-BB2*U*U*U*K1*TL/XD)
ACS, 2)-(AA21AU+BB2*U*U*K2-BB2*U*U*R1'TL/XD)
A(5,3)-(AA22*UfrBB2*U*UAK3+BB2*U*U*U*K1*TL*TL/(2.DO*XD))
A( 5,4)-C BB2*U*U*KJ /XD1
A(5,5)-(BB20- .-''TL*TL/(2.DO*XD))

C
BC 1,1)-I. 000
B(1.21-0 .000
5(1, 31-0.000
5(1,41-0.000
B(1, 51-0. 000
DC 2, 1)-0. 000
B( 2, 21-l. 000
5(2,31-0.000
B(2,4)-0.ODO
B(2,5)-0.ODO
5(3,11-0.000
BC 3,21-0.000
BC3,3)-(5B1*U*U*U*K1*TL*TL*TL/(6.DO*XD))
5(3,41-0.000
B(3,51=(BB1*U*U*K1*TL*TL*TL/(6.DOAXD))
5(4,11-0.000
BC 4,21-0.000
5(4,31-0.000
5(4,41-1.000
5(4,51-0.000
B( 5, 11-0.000
5(5,21-0.000
5(5,3)-(1.0D0+BB2hUhUhU*KIC*TL*TLhTL/(6.D0*XD))
5(5,41-0.000
B(5,51-(BB2hU*U*K1*TLhTLhTL/(6.D0*XD))
RETURN
END
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APPENDIX D

C PROGRAM THESISN.FOR (Time Delay - Newton's Iteration Method)
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION Kl,K2,I(3,L,NR,NV,NDRS,NDRB, IZ,MASS,
&NRDOT,NVDOT
DIMENSION A(4,4) ,FVI(4),IVi( 4) ,ZZZ(4,4) ,WR( 4) ,WI(4)

C
OPEN (1i,FILE-'BIFI.RES',STATUS-'NEW')

C vehicle Parameters:
WEZGHT-4 35.0
Iz -45.0
L -7.3
RHO -1.94
G -32.2
XG -0.0104
MASS -WEIGHtT/G

C
YRDOT --0.O0178*O.5*RHOhL**4
YVDOT --O.03430*0.5*RHO*L**3
YR =+0.01187*0.5*RHO*L**3
Yv --0.03896*0.5*RHO*L**2
YDRS -+0.02345*0.5*RHO*L**2
YDRB -+0.02345*0.5*RHO*L**2
NRDOT --O.00047*0.5*RHO*L**5
NVOOT --0.00i78*0.5hBHO*L**4
NR - 0.O0?02*0.5*RHO*L**4
NV --0.O0769*O.5*RHO*L**3
NDRS --0.337*O.02345*0.5*RHO*L**3
NDRB -+0.283*0.O2345*0.5*RHO*L**3

C
WRITE (*,1001)
READ (*,*) TCMIN,TCMAX,ITC
WRITE (*,1003)
READ (,) U

C
DH -( IZ-NRDOT)*(I1ASS-YVDOT)-

£ (MASS*XG-YRDOT) *(KASS*XG..NVDOT)
AAi1-( (IZ-NRDOT)*YV-(MASS*XG-YRDOT)*NV)/DH
AA12-( (IZ-NRDOT)*(-MASS+YR)-

& (MASS hXG-YRDOT)*(-tMASS*XG+NR) 7/DH
AA21-( (IASS-YVDOT)*NV-(MASS*XG-NVDOT)*YV)/DH
AA22-( (MASS-YVDOT)*(-MASS*XG+NR)-.

& (MASS*XG-NVDOT)*(-MASS+YR) 7/DH
SBhi-( (IZ-NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS)/DH
B512-( (IZZNRDOT)*YDRDB.(MASS*XG-YRDOT)*NDRD)/DH
B821-( (MASS-~YVDOT)*NDRS-(MASS*XG-NVDOT)*YDRS)/DH
BB22-( (MASS.-YVDOT)*NDRB-(MASS*XG-NVDOT)*YDRB)/Dff

C
* WRITE (*,1004)

READ (,) RATIO
C

BBI-BBII+RATIO*BBi2
* BB2-BB2liRATIO*BB22

C
WRITE (h,1005)
READ (,) TL

C
EPS-1 .D-10
ITMAX-1000
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C
DO 1 I-1,ITC
WRITE (k,2001) I,ITC
TC-TCMIN+( I-I)*(TCM4AX-TCMIN)/( ITC-1)
TCD-TC*L/U
POLEC-1.O/TCD
ADl-3.O*POLEC
AD2-3 .OAFOLEC**2
AD3-POLEC*A 3
A1=BB1IJAU*
B1SBD2*U*U
C1--ADI-(AA1I+AA22) AU
A2-( BB1*AA22-BB2*AA12 ) U**3
B2-(BB2*AA11-BB1*AA21 )AU**3
K1-AD3/( (BB2*AA11-BBI*AA21)*Uh*3)
C2-AD2-(AAII*AA22-~AA12*AA21 ) U**2+BB2*U*U*KI
K2-(C1*B2-C2AB1 )/(A1AB2-A2*81)
IC3-(C2*Al-C1*A2)/(Al*B2-A2*Bl)

C
Al- (AAIIABB2-AA21*BBI)*U*U*U*Kl
A2- (AA11*A.A22-AA12*AA21)*U*U+(AA11*BB2-AA21*BB1)*U*U*U*K3+
&(AA22*BBl-AA12*BB2)*U*U*U*X2-BB2*U*U*Kl
A3--(AAII+AA22 )*U-(DBBIK2+BB2*K3) UAgJj
DO- (AAII*BB2-AA21*BB1)*U*U*UAu*Kl
Bl--(AA12*BB2-AA22*BB ) AU*U*U*K1-BB2AU*U*U*KI
B2--BB1*U*U*Kl

C
C COMPUTE INITIAL APPROXIMATION FOR OMEGA (TL-O)
C

AQ-B2*A3-Bl
BQ-BI *A2-B2 *A1-BO*A3
CQ-BO *A1
DET-BQ**2-4 .DO*AQ*CQ
IF (DET.LT.O.DO) GO TO 1
ZTI-(-BQ+DSQRT(DET) )/(2.ODO*AQ)
ZT2-(--BQ-DSQRT(DET) )/( 2.ODO*AQ)
IF (ZT1.GE.O.DO) OM-DSQRT(ZTI)
IF (ZT2.GE.O.DO) ON-DSQRT(ZT2)
ALPHAI-AQ
ALPHA2-BQ
ALPHA3-CQ
BETAl --82
BETA2-BO+82*A2-B1*A3
BETA3-BI *A1 -80 *A2

C
C COMPUTE EXACT OMEGA USING NEWTON'S ITERATION
C

OMOLD-OM
3 F-(DETA1AOMOLDA*5+BETA2*OMOLD*A3+BETA3*OMOLD)*DSIN(OMOLD*TL)
& +(ALPHA1*OMOLD**4+ALPHA2*OMOLDA*2+ALPHA3)*DCOS(OMOLD*TL)

FPRIME-( 5. DOADETA1*OMOLD**4+3 .DO*BETA2*OMOLD**2+BETA3)
& *DSIN(OMOLD*TL).(BETA1*OMOLD*A5+BETA2*OMOLDA*3.tDETA3AOMOLD)
& *TL*DCOS(OMOLDATL)+(4.DO*ALPHA1*OMOLDA*3+2.DO*ALPHA2*OMOLD)
& ADCOS(OMOLD*TL)-(ALPHA1*OMOLD**4+ALPHA2*OMOLD*AZ+ALPHA3)
& *TL*DSIN(ONOLD*TL)

IF (FPRIME.EQ.O.DO) STOP 1112
IF (F.EQ.O.DO) GO TO 2
OMNEW-OMOLD- F/FPR IME
OMDI F-DABS (OMNEW-OHOLD)
IF (OMDIF.LE.EPS) GO TO 2
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OMOLD-OMNEW
IT-IT+I
IF (IT.GT.ITMAX) STOP 1111
GO TO 3

C
2 OM-OMNEW

XDNUM-DSQRT((B0-B2*OM**2)**2+(Bs*OM)**2)
XDDEN-OM*DSQRT((Al-A3*OM**2)**2+(A2*OM-OM**3)**2)
XD-XDNUM/XDDEN
XD-XD/L

C
WRITE(11,*) XD,TC,OM

C
1 CONTINUE

1001 FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF TC')
1003 FORMAT ( ENTER U')
1004 FORMAT (U ENTER BOW/STERN RUDDER RATIO')
1005 FORMAT (' ENTER TIME LAG')
2001 FORMAT (215)

END
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